A new exponent of simultaneous rational approximation

Anthony Poëls

February 19, 2019

Abstract

We introduce a new exponent of simultaneous rational approximation $\widehat{\lambda}_{\min}(\xi,\eta)$ for pairs of real numbers ξ,η , in complement to the classical exponents $\lambda(\xi,\eta)$ of best approximation, and $\widehat{\lambda}(\xi,\eta)$ of uniform approximation. It generalizes Fischler's exponent $\beta_0(\xi)$ in the sense that $\widehat{\lambda}_{\min}(\xi,\xi^2)=1/\beta_0(\xi)$ whenever $\lambda(\xi,\xi^2)=1$. Using parametric geometry of numbers, we provide a complete description of the set of values taken by $(\lambda,\widehat{\lambda}_{\min})$ at pairs (ξ,η) with $1,\xi,\eta$ linearly independent over \mathbb{Q} .

MSC 2010: 11J13(Primary), 11H06 (Secondary), 11J82.

Keywords: Diophantine approximation, parametric geometry of numbers, simultaneous approximation, exponents of Diophantine approximation

1 Introduction

Let ξ and η be non-zero real numbers. The following simultaneous approximation problem has been intensively studied during the last decades:

Problem $E_{\lambda,X}$: Given $\lambda > 0$ and $X \ge 1$, we search for solutions $(x_0, x_1, x_2) \in \mathbb{Z}^3 \setminus \{0\}$ of the system

$$1 \le |x_0| \le X$$
 and $\max(|x_0\xi - x_1|, |x_0\eta - x_2|) \le X^{-\lambda}$.

We denote by $\lambda(\xi, \eta)$ (resp. $\widehat{\lambda}(\xi, \eta)$) the supremum of real numbers λ for which $E_{\lambda, X}$ admits a non-zero integer solution for arbitrarily large values of X (resp. for each sufficiently large value of X). For all real numbers ξ, η , we have

$$\lambda(\xi,\eta) \ge \widehat{\lambda}(\xi,\eta) \ge \frac{1}{2},$$

the right-hand side inequality following from Dirichlet's box principle (or, equivalently, Minkowski's theorem). The study of such Diophantine exponents of approximation goes back to Jarník and Khinchin, see [1] for a well supplied account of the topic. In this paper, we consider the following variant:

Problem $E_{\lambda,\mu,X}$: Given $\lambda > 0$, $\mu \ge 0$ and X > 1, we search for solutions $(x_0, x_1, x_2) \in \mathbb{Z}^3 \setminus \{0\}$ of the system

$$1 \le |x_0| \le X$$
 and $\max(|x_0\xi - x_1|, |x_0\eta - x_2|) \le \min(X^{-\lambda}, |x_0|^{-\mu}).$

This was introduced by Fischler in [7] in the special case where $\eta = \xi^2$. For $0 \le \mu < \lambda(\xi, \eta)$, we denote by $\widehat{\lambda}_{\mu}(\xi, \eta)$ the supremum of the real numbers λ for which $E_{\lambda,\mu,X}$ admits a non-zero integer

solution for each sufficiently large value of X. Note that the map $\mu \mapsto \widehat{\lambda}_{\mu}(\xi, \eta)$ is non-increasing. We define

$$\widehat{\lambda}_{\min}(\xi, \eta) = \inf_{0 < \mu < \lambda(\xi, \eta)} \widehat{\lambda}_{\mu}(\xi, \eta) = \lim_{\mu \to \lambda(\xi, \eta)^{-}} \widehat{\lambda}_{\mu}(\xi, \eta). \tag{1.1}$$

See Remark 2.2 and (2.2) for an interpretation of $\widehat{\lambda}_{\min}$. Note that for $\mu = 0$ we have $\widehat{\lambda}_0(\xi, \eta) = \widehat{\lambda}(\xi, \eta)$, so that

$$\widehat{\lambda}_{\min}(\xi, \eta) \leq \widehat{\lambda}(\xi, \eta).$$

More generally, we have $\widehat{\lambda}_{\mu}(\xi,\eta) = \widehat{\lambda}(\xi,\eta)$ for any $\mu < \widehat{\lambda}(\xi,\eta)$. In particular, if $\widehat{\lambda}(\xi,\eta) = \lambda(\xi,\eta)$, Definition (1.1) gives $\widehat{\lambda}_{\min}(\xi,\eta) = \widehat{\lambda}(\xi,\eta) = \lambda(\xi,\eta)$. Yet, it is well-known that $\widehat{\lambda}(\xi,\eta) = \lambda(\xi,\eta) = 1/2$ for almost all (ξ,η) with respect to the Lebesgue measure on \mathbb{R}^2 (see [3, §2]). We thus have the following result:

Theorem 1.1. For almost all real numbers ξ, η (with respect to the Lebesgue measure on \mathbb{R}^2), we have

$$\widehat{\lambda}_{\min}(\xi,\eta) = \frac{1}{2}.$$

The goal of this paper is to give an interpretation of the exponents $\widehat{\lambda}_{\mu}(\xi,\eta)$ and $\widehat{\lambda}_{\min}(\xi,\eta)$ in the setting of parametric geometry of numbers and to prove the following description for the spectrum of the pair $(\lambda, \widehat{\lambda}_{\min})$, i.e. the set of values taken by $(\lambda, \widehat{\lambda}_{\min})$ at pairs (ξ, η) with $1, \xi, \eta$ linearly independent over \mathbb{Q} .

Theorem 1.2. For any $\xi, \eta \in \mathbb{R}$ with $1, \xi, \eta$ linearly independent over \mathbb{Q} , we have either $\widehat{\lambda}_{\min}(\xi, \eta) = \lambda(\xi, \eta) = 1/2$, or

$$0 \le \widehat{\lambda}_{\min}(\xi, \eta) \le 1, \quad \frac{1}{2} < \lambda(\xi, \eta) \le +\infty \quad and \quad \frac{\widehat{\lambda}_{\min}(\xi, \eta)^2}{1 - \widehat{\lambda}_{\min}(\xi, \eta)} \le \lambda(\xi, \eta). \tag{1.2}$$

Conversely, for any $\widehat{\lambda} \in \mathbb{R}$ and any $\lambda \in \mathbb{R} \cup \{+\infty\}$ satisfying either $\widehat{\lambda} = \lambda = 1/2$, or

$$0 \le \hat{\lambda} \le 1, \quad \frac{1}{2} < \lambda \le +\infty \quad and \quad \frac{\hat{\lambda}^2}{1 - \hat{\lambda}} \le \lambda,$$
 (1.3)

there exist two real numbers ξ and η , with $1, \xi, \eta$ linearly independent over \mathbb{Q} , such that

$$\lambda(\xi,\eta) = \lambda \quad and \quad \widehat{\lambda}_{\min}(\xi,\eta) = \widehat{\lambda}.$$

Laurent computed the spectrum of $(\lambda, \hat{\lambda})$ in [8] (see Corollary 2 of [8]). He proved that for any ξ, η with $1, \xi, \eta$ linearly independent over \mathbb{Q} , we have

$$\frac{1}{2} \le \widehat{\lambda}(\xi, \eta) \le 1, \quad \frac{\widehat{\lambda}(\xi, \eta)^2}{1 - \widehat{\lambda}(\xi, \eta)} \le \lambda(\xi, \eta) \le +\infty, \tag{1.4}$$

and that (1.4) describe entirely the spectrum of $(\lambda, \widehat{\lambda})$. Since $\widehat{\lambda}_{\min} \leq \widehat{\lambda}$, the inequalities (1.2) are implied by (1.4) together with $\lambda(\xi, \eta) > 1/2$. It would be interesting to study the joint spectrum of $(\lambda, \widehat{\lambda}, \widehat{\lambda}_{\min})$.

In [7] Fischler introduced a new exponent of approximation $\beta_0(\xi)$ for each real number ξ . When $\lambda(\xi, \xi^2) < 1$, he defined $\beta_0(\xi) = +\infty$. Otherwise he set $\beta_0(\xi) = \lim_{\varepsilon \to 0^+} \beta_{\varepsilon}(\xi)$, with $\beta_{\varepsilon}(\xi) = 1/\widehat{\lambda}_{1-\varepsilon}(\xi, \xi^2)$ (for $0 < \varepsilon \le 1$). Then he studied in depth the real numbers ξ for which $\beta_0(\xi) < 2$. For those numbers, the exponent $\beta_0(\xi)$ and $\widehat{\lambda}_{\min}(\xi, \xi^2)$ are related as follows.

Lemma 1.1. If
$$\beta_0(\xi) < 2$$
, then $\lambda(\xi, \xi^2) = 1$ and $\beta_0(\xi) = 1/\widehat{\lambda}_{\min}(\xi, \xi^2)$.

Proof Let ξ be such that $\beta_0(\xi) < 2$. Then we have $\lambda(\xi, \xi^2) \ge 1$. In general, the inequality $1/\beta_0(\xi) \le \hat{\lambda}(\xi, \xi^2)$ holds, so that $\hat{\lambda}(\xi, \xi^2) > 1/2$. This implies that $\lambda(\xi, \xi^2) \le 1$. This result can be obtained from Davenport and Schmidt's work by generalizing Lemmas 2 and 6 of [6] (see for example [10, Corollaire 6.2.7]); it is also a corollary of a recent result due to Schleischitz [13, Theorem 1.6]. Finally, this shows that $\lambda(\xi, \xi^2) = 1$. In this case, we have $\beta_0(\xi) = 1/\hat{\lambda}_{\min}(\xi, \xi^2)$ by definition of $\beta_{\varepsilon}(\xi)$ (0 < ε < 1).

Let \mathcal{V} denotes the set

$$\mathcal{V} = \{(\xi, \eta) \mid 1, \xi, \eta \text{ linearly independent over } \mathbb{Q} \text{ and } \lambda(\xi, \eta) = 1\}.$$
 (1.5)

Applying Theorem 1.2 with $\lambda = 1$, we obtain the following result.

Theorem 1.3. With the above notation, the set of values taken by $1/\widehat{\lambda}_{\min}$ at pairs $(\xi, \eta) \in \mathcal{V}$ is $[\gamma, +\infty]$, where $\gamma = (1+\sqrt{5})/2$ denotes the golden ratio.

The situation is radically different for the pairs (ξ, ξ^2) . Following [2] let us denote by \mathcal{S} the set of all values $\sigma = 1/\limsup_{k \to +\infty} [s_{k+1}; s_k, \ldots, s_1]$ where $(s_k)_{k \ge 1}$ runs through all sequences of positive integers (here $[a_0; a_1, a_2, \ldots]$ denotes the continued fraction whose partial quotients are a_0, a_1, \ldots). The largest element of \mathcal{S} is $\frac{1}{\gamma}$. The values immediately below have been described by Cassaigne [4]. They constitute a decreasing sequence of quadratic numbers converging to the largest accumulation point $s \approx 0.3867\ldots$ of \mathcal{S} . Also note that Cassaigne has shown in [4] that this set has empty interior. Elements of \mathcal{S} appear in the description of the classical exponents of approximation to Sturmian continued fractions, studied by Bugeaud and Laurent in [2], and of Sturmian type numbers (see [9]). The set \mathcal{S} is related to the spectrum of β_0 by the following result (see [7]):

Theorem 1.4 (Fischler, 2007). Let us set $S_0 = \{\beta_0(\xi) \mid \xi \in \mathbb{R} \text{ not algebraic of degree} \leq 2\}$. Then we have

$$S_0 \cap [\gamma, \sqrt{3}) = \left\{1 + \frac{1}{1+\sigma} \mid \sigma \in S\right\} \cap (1, \sqrt{3}).$$

In view of the description of S given above, the smallest element of S_0 in $[\gamma, +\infty)$ is therefore γ and the values immediately above constitute an increasing sequence of quadratic numbers converging to the smallest accumulation point $1.721 \cdots < \sqrt{3}$ of S_0 . Thus, Theorem 1.3 implies that $\{1/\widehat{\lambda}_{\min}(\xi,\eta) \mid (\xi,\eta) \in \mathcal{V}\} \cap [\gamma,\sqrt{3}]$ is the full interval $[\gamma,\sqrt{3}]$ (where \mathcal{V} is defined by (1.5)), whereas

$$\{\beta_0(\xi)\mid \xi\in\mathbb{R} \text{ not algebraic of degree}\leq 2\}\cap [\gamma,\sqrt{3}] = \{1/\widehat{\lambda}_{\min}(\xi,\xi^2)\mid (\xi,\xi^2)\in\mathcal{V}\}\cap [\gamma,\sqrt{3}]$$

has empty interior and its complement in $[\gamma, \sqrt{3}]$ has non-empty interior by Theorem 1.4.

In Section 2 we study the "rigidity" of the exponents $\widehat{\lambda}_{\mu}$ and we recall the notion of *minimal points*, which is useful to compute the exponents. We use parametric geometry of numbers to prove Theorem 1.2. In section 3 we briefly recall the elements of that theory and we provide a parametric version of the exponent $\widehat{\lambda}_{\min}(\xi,\eta)$. The proof of Theorem 1.2 is given in Section 4.

2 Exponents $\hat{\lambda}_{\mu}$

Unlike the classical exponents $\lambda(\xi, \eta)$ and $\widehat{\lambda}(\xi, \eta)$, the exponent $\widehat{\lambda}_{\mu}(\xi, \eta)$ may change if we perturbate the problem $E_{\lambda,\mu,X}$ slightly, for example by using $\|\mathbf{x}\|$ instead of $|x_0|$ (where $\|\cdot\|$ is a fixed norm on \mathbb{R}^3). However, as kindly pointed out to the author by Damien Roy, this happens only at the points μ at which the non-increasing map $\mu \mapsto \widehat{\lambda}_{\mu}(\xi, \eta)$ is not continuous; this set of points is therefore countable. We formalize this claim in Proposition 2.1 below. Thus the exponent

 $\widehat{\lambda}_{\min}(\xi,\eta)$ can be defined using any norm $\|\mathbf{x}\|$ instead of $|x_0|$ in $E_{\lambda,\mu,X}$.

Let $\xi, \eta \in \mathbb{R}$ be two real numbers with $1, \xi, \eta$ linearly independent over \mathbb{Q} . The exponents $\widehat{\lambda}_{\mu}(\xi, \eta)$ are defined as in the introduction. We denote by $\|\cdot\|$ the usual Euclidean norm in \mathbb{R}^3 . If $f, g: I \to [0, +\infty)$ are two fonctions on a set I, we write $f \ll g$ (resp. $f \gg g$) to mean that there is a positive constant c such that $f(x) \leq cg(x)$ (resp. $f(x) \geq cg(x)$) for each $x \in I$. We write $f \approx g$ if both $f \ll g$ and $g \ll f$ hold. Let $\Delta, N: \mathbb{R}^3 \to [0, +\infty)$ such that for any $\mathbf{x} = (x_0, x_1, x_2)$

$$\Delta(\mathbf{x}) \simeq \max(|x_0\xi - x_1|, |x_0\eta - x_2|)$$

and

$$N(\mathbf{x}) \approx ||\mathbf{x}||$$
 if $\max(|x_0\xi - x_1|, |x_0\eta - x_2|) < 1$,

(the implicit constants depend only on Δ, N, ξ and η). Note that we may take $N(x) = |x_0|$, although N is not a norm in this case. For $0 \le \mu < \lambda(\xi, \eta)$, we denote by $\widehat{\nu}_{\mu}(\xi, \eta)$ the supremum of the real numbers ν for which the system

$$N(\mathbf{x}) \le X$$
 and $\Delta(\mathbf{x}) \le \min\left(X^{-\nu}, N(\mathbf{x})^{-\mu}\right)$ (2.1)

admits a non-zero integer solution for each sufficiently large value of X. If there is no such real number ν , we set $\widehat{\nu}_{\mu}(\xi,\eta) = 0$. The map $\mu \mapsto \widehat{\nu}_{\mu}(\xi,\eta)$ is non-increasing. We set

$$\widehat{\nu}_{\min}(\xi,\eta) = \inf_{0 < \mu < \lambda(\xi,\eta)} \widehat{\nu}_{\mu}(\xi,\eta) = \lim_{\mu \to \lambda(\xi,\eta)^{-}} \widehat{\nu}_{\mu}(\xi,\eta).$$

We have the following result:

Proposition 2.1. The non-increasing maps $\mu \mapsto \widehat{\nu}_{\mu}(\xi, \eta)$ and $\mu \mapsto \widehat{\lambda}_{\mu}(\xi, \eta)$ have the same set of discontinuities on $[0, +\infty)$ and they coincide outside of this set. Moreover we have:

$$\widehat{\nu}_{\min}(\xi,\eta) = \widehat{\lambda}_{\min}(\xi,\eta).$$

Proof Let us prove that $\widehat{\lambda}_{\mu'}(\xi,\eta) \geq \widehat{\nu}_{\mu}(\xi,\eta)$ for any $0 \leq \mu' < \mu$. If $\widehat{\nu}_{\mu}(\xi,\eta) = 0$ it is trivial. Now, suppose $\widehat{\nu}_{\mu}(\xi,\eta) > 0$ and let $0 < \lambda' < \lambda < \widehat{\nu}_{\mu}(\xi,\eta)$. If X is large enough, then (2.1) has a non-zero integer solution \mathbf{x} and this point \mathbf{x} is also solution of the problem $E_{\lambda',\mu',X}$ stated in the introduction. By letting λ' tend to λ , then by letting λ tend to $\widehat{\nu}_{\mu}(\xi,\eta)$, it follows that $\widehat{\lambda}_{\mu'}(\xi,\eta) \geq \widehat{\nu}_{\mu}(\xi,\eta)$. Conversely, we also have $\widehat{\nu}_{\mu'}(\xi,\eta) \geq \widehat{\lambda}_{\mu}(\xi,\eta)$. In summary, we have shown that for any $\mu_1 < \mu < \mu_2$, we have $\widehat{\lambda}_{\mu_2}(\xi,\eta) \leq \widehat{\nu}_{\mu}(\xi,\eta) \leq \widehat{\lambda}_{\mu_1}(\xi,\eta)$, which yields $\widehat{\nu}_{\mu}(\xi,\eta) = \widehat{\lambda}_{\mu}(\xi,\eta)$ at each point where $\mu \mapsto \widehat{\lambda}_{\mu}(\xi,\eta)$ (or $\mu \mapsto \widehat{\nu}_{\mu}(\xi,\eta)$) is continuous.

To compute the exponent $\widehat{\nu}_{\mu}(\xi, \eta)$ it is sufficient to consider only "the best" solutions of (2.1). Following Davenport and Schmidt [5], [6], we call a sequence of minimal points (associated to N and Δ) a sequence of non-zero integer points $(\mathbf{x}_i)_{i>0}$ which satisfies

- $\bullet \ \mathrm{N}(\mathbf{x}_1) < \mathrm{N}(\mathbf{x}_2) < \dots \ \mathrm{and} \ \Delta(\mathbf{x}_1) > \Delta(\mathbf{x}_2) > \dots,$
- For each non-zero $\mathbf{z} \in \mathbb{Z}^3$, if $N(\mathbf{z}) < N(\mathbf{x}_{i+1})$, then $\Delta(\mathbf{z}) \ge \Delta(\mathbf{x}_i)$.

For simplicity, let us write $X_i = N(\mathbf{x}_i)$ and $\Delta_i = \Delta(\mathbf{x}_i)$. Let $\mu \geq 0$, $\lambda > 0$ and X > 0, and suppose that $\mathbf{x} \in \mathbb{Z}^3$ satisfies (2.1). If $N(\mathbf{x}) \gg 1$, then there is an index i such that $X_i \leq N(\mathbf{x}) < X_{i+1}$. Since $\Delta_i \leq \Delta(\mathbf{x})$ and $\mu \geq 0$, the point \mathbf{x}_i is also solution of (2.1). Hence, for each $\mu < \lambda(\xi, \eta)$, the exponent $\widehat{\nu}_{\mu}(\xi, \eta)$ is the supremum of the real numbers λ such that for each X large enough, there exists $i \geq 1$ for which

$$X_i \le X$$
 and $\Delta_i \le \min(X^{-\lambda}, X_i^{-\mu})$.

Let $0 < i_1 < i_2 < \dots$ denote the sequence of indices i such that $\Delta_i \leq X_i^{-\mu}$. Then

$$\widehat{\nu}_{\mu}(\xi, \eta) = \liminf_{k \to \infty} \frac{-\log(\Delta_{i_k})}{\log(X_{i_{k+1}})}.$$
(2.2)

Remark 2.2. This formula is similar to (11) of [7]. Roughly speaking, $\widehat{\lambda}_{\min}(\xi, \eta)$ corresponds to $\widehat{\lambda}(\xi, \eta)$ when we only take in account the exceptionally precise approximants, i.e. solutions $\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{Z}^3$ of $E_{\lambda, X}$ with $\max(|x_0 \xi - x_1|, |x_0 \eta - x_2|)$ very close to $|x_0|^{-\lambda(\xi, \eta)}$.

3 Parametric geometry of numbers

3.1 The setting

In this section we quickly recall the basics of the parametric geometry of numbers following Schmidt and Summerer [14], [15] and Roy [11]. We use the setting of [11]. We denote by $\mathbf{x} \wedge \mathbf{y}$ the standard vector product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$, by $\mathbf{x} \cdot \mathbf{y}$ their standard inner product and by $\|\mathbf{x}\|$ the Euclidean norm of \mathbf{x} . Fix $\mathbf{u} \in \mathbb{R}^3 \setminus \{0\}$. For each $q \geq 0$ we set

$$\mathcal{C}_{\mathbf{u}}(q) := \{ \mathbf{x} \in \mathbb{R}^3 : \|\mathbf{x}\| \le 1, |\mathbf{x} \cdot \mathbf{u}| \le e^{-q} \} \quad \text{and} \quad \mathcal{C}_{\mathbf{u}}^*(q) := \{ \mathbf{x} \in \mathbb{R}^3 : \|\mathbf{x}\| \le e^q, \|\mathbf{x} \wedge \mathbf{u}\| \le 1 \}.$$

For j=1,2,3 we define a function $L_j:[0,+\infty)\to\mathbb{R}$ by $L_j(q)=\log(\lambda_{j,\mathbf{u}}(q))$, where $\lambda_{j,\mathbf{u}}(q)$ denotes the j-th successive minimum of the convex body $C_{\mathbf{u}}(q)$ with respect to the lattice \mathbb{Z}^3 . We set $\mathbf{L}_{\mathbf{u}}=(L_1,L_2,L_3)$. The functions L_j are continuous, piecewise linear with slopes 0 and 1, and by Minkowski's second theorem they satisfy $L_1(q)+L_2(q)+L_3(q)=q+\mathcal{O}(1)$ (for any $q\geq 0$). For each $\mathbf{x}\in\mathbb{R}^3$, we further define $\lambda_{\mathbf{x}}(q,\mathcal{C}_{\mathbf{u}}(q))$ to be the smallest real number $\lambda\geq 0$ such that $\mathbf{x}\in\lambda\mathcal{C}_{\mathbf{u}}(q)$. When $\mathbf{x}\neq 0$, this number is positive and so we obtain a function $L_{\mathbf{x}}:[0,+\infty)\to\mathbb{R}$ by putting $L_{\mathbf{x}}(q):=\log(\lambda_{\mathbf{x}}(q,\mathcal{C}_{\mathbf{u}}(q)))$. For j=1,2,3 we set

$$\overline{\psi}_j(\mathbf{u}) = \overline{\psi}_j = \limsup_{q \to \infty} \frac{L_j(q)}{q} \quad \text{and} \quad \underline{\psi}_j(\mathbf{u}) = \underline{\psi}_j = \liminf_{q \to \infty} \frac{L_j(q)}{q}.$$

Similarly we define the function $\mathbf{L}_{\mathbf{u}}^* = (L_1^*, L_2^*, L_3^*), \overline{\psi}_j^*, L_{\mathbf{x}}^* \ (\mathbf{x} \in \mathbb{R}^3 \setminus \{0\}), \underline{\psi}_j^*$ associated to the family of convex bodies $\mathcal{C}_{\mathbf{u}}^*(q)$. For any non-zero $\mathbf{x} \in \mathbb{R}^3$ we have

$$L_{\mathbf{x}}^*(q) = \max\left(\log\|\mathbf{x} \wedge \mathbf{u}\|, \log\|\mathbf{x}\| - q\right) \quad (q \ge 0). \tag{3.1}$$

The dual functions L_i^* are related to the functions L_i by Mahler's duality:

Proposition 3.1 (Mahler). For j = 1, 2, 3 we have $L_j(q) = -L_{4-j}^*(q) + \mathcal{O}(1)$ for all q > 0.

Thus

$$\underline{\psi}_{i} = -\overline{\psi}_{4-j}^{*} \quad \text{and} \quad \overline{\psi}_{j} = -\underline{\psi}_{4-j}^{*} \quad (j = 1, 2, 3).$$
(3.2)

The following definition is that of a 3-system (see [12, Definition 4.1]; this is an analog of a (3,0)-system for Schmidt and Summerer [15]).

Definition 3.2. Fix a real number $q_0 \ge 0$. A 3-system on $[q_0, +\infty)$ is a continuous piecewise linear map $\mathbf{P} = (P_1, P_2, P_3) : [q_0, +\infty) \to \mathbb{R}^3$ with the following properties:

- (a) For each $q \ge q_0$, we have $0 \le P_1(q) \le P_2(q) \le P_3(q)$ and $P_1(q) + P_2(q) + P_3(q) = q$.
- (b) If H is a non-empty open subinterval of $[q_0, +\infty)$ on which \mathbf{P} is differentiable, then there is an integer r $(1 \le r \le 3)$, such that P_r has slope 1 on H while the other components P_j of \mathbf{P} $(j \ne r)$ are constant on H.

(c) If $q > q_0$ is a point at which **P** is not differentiable and if the integers r and s, for which P_r has slope 1 on $(q - \varepsilon, q)$ and P_s has slope 1 on $(q, q + \varepsilon)$ (for $\varepsilon > 0$ small enough), satisfy r < s, then we have $P_r(q) = P_{r+1}(q) = \cdots = P_s(q)$.

The following fondamental result was proved by Roy in [11].

Theorem 3.1 (Roy, 2015). For each non-zero point $\mathbf{u} \in \mathbb{R}^3$, there exist $q_0 > 0$ and a 3-system \mathbf{P} on $[q_0, +\infty)$ such that $\|\mathbf{L}_{\mathbf{u}} - \mathbf{P}\|_{\infty}$ is bounded on $[q_0, +\infty)$. Conversely, for each 3-system \mathbf{P} on an interval $[q_0, +\infty)$, there exists a non-zero point $\mathbf{u} \in \mathbb{R}^3$ such that $\|\mathbf{L}_{\mathbf{u}} - \mathbf{P}\|_{\infty}$ is bounded on $[q_0, +\infty)$.

Following [15, §3] we define the *combined graph* of a set of real valued functions defined on an interval I to be the union of their graphs in $I \times \mathbb{R}$. For a map $\mathbf{P} : [c, +\infty) \to \mathbb{R}^3$ and an interval $I \subset [c, +\infty)$, we also define the *combined graph of* \mathbf{P} on I to be the combined graph of its components P_1, P_2, P_3 restricted to I.

We recall the following relationship between classical and parametric exponents (see [11]). For any $\mathbf{u} = (1, \xi, \eta)$ with \mathbb{Q} -linearly independent coordinates, we have

$$\left(\underline{\psi}_{3}(\mathbf{u}), \overline{\psi}_{3}(\mathbf{u})\right) = \left(\frac{\widehat{\lambda}(\xi, \eta)}{1 + \widehat{\lambda}(\xi, \eta)}, \frac{\lambda(\xi, \eta)}{1 + \lambda(\xi, \eta)}\right). \tag{3.3}$$

3.2 Parametric formulation of $\hat{\lambda}_{min}$

Definition 3.3. Let $c \geq 0$ and let $P: [c, +\infty) \to [0, +\infty)$ be an unbounded continuous piecewise linear function, with slopes 0 and 1. Let $(q_i)_{i\geq 0}$ be the increasing sequence of abscissas at which P changes slope from 1 to 0. We suppose $(q_i)_{i\geq 0}$ infinite and define $\overline{\psi}(P)$, $\psi(P)$ by

$$\overline{\psi}(P) = \limsup_{q \to +\infty} \frac{P(q)}{q} = \limsup_{k \to \infty} \frac{P(q_k)}{q_k} \quad \text{and} \quad \underline{\psi}(P) = \liminf_{q \to +\infty} \frac{P(q)}{q}.$$

For each $\alpha < \overline{\psi}(P)$, let $(q_{i,\alpha})_{i\geq 0}$ be the (increasing) subsequence of all abscissas q_k satisfying $q_k^{-1}P(q_k) \geq \alpha$. For each $i\geq 0$ we denote by $r_{i,\alpha}$ the abscissa of the intersection point of the horizontal line passing through $(q_{i,\alpha}, P(q_{i,\alpha}))$ and of the line with slope 1 passing through $(q_{i+1,\alpha}, P(q_{i+1,\alpha}))$. We set

$$\kappa_{\alpha}(P) = \liminf_{i \to +\infty} \frac{P(q_{i,\alpha})}{r_{i,\alpha}} \quad \text{and} \quad \kappa(P) = \lim_{\alpha \to \overline{\psi}(P)} \kappa_{\alpha}(P).$$

Let $P^*: [c, +\infty) \to (-\infty, 0]$ be an unbounded continuous piecewise linear function, with slopes 0 and -1 and which changes from slope -1 to 0 infinitely many times. In a dual manner, for $\alpha > \liminf_{q \to \infty} P^*(q)/q$ we define

$$\kappa_{\alpha}^*(P^*) = -\kappa_{-\alpha}(-P^*)$$
 and $\kappa^*(P^*) = -\kappa(-P^*)$.

Note that $\kappa(P) \leq \psi(P)$.

Lemma 3.4. Let $c \ge 0$ and let P, R be two unbounded non-negative continuous piecewise linear functions defined on $[c, +\infty)$, with slopes 0 and 1, and which change from slope 1 to 0 infinitely many times. Suppose that |P(q) - R(q)| = o(q) as q tends to infinity. Then, the non-increasing maps $\alpha \mapsto \kappa_{\alpha}(P)$ and $\alpha \mapsto \kappa_{\alpha}(R)$ have the same set of discontinuities on [0,1[and they coincide outside of this set. Moreover, we have $\kappa(P) = \kappa(R)$.

Proof Let P and R be as above. By hypothesis we have $\overline{\psi}(P) = \overline{\psi}(R) =: \overline{\psi}$ and $\psi(P) = \underline{\psi}(R) =: \underline{\psi}$. Fix $\alpha < \beta < \overline{\psi}$ and let us denote by $(q_i^P)_i$, $(q_{i,\beta}^P)_i$, $(r_{i,\beta}^P)_i$ (resp. $(q_i^R)_i$, $(q_{i,\alpha}^R)_i$, $(r_{i,\alpha}^R)_i$) the quantities associated by Definition 3.3 to $\kappa_{\beta}(P)$ (resp. $\kappa_{\alpha}(R)$). Let us first prove that

$$\kappa_{\beta}(P) \le \kappa_{\alpha}(R).$$
(3.4)

Let $\varepsilon > 0$ be such that $\alpha + \varepsilon < \beta$ and fix i arbitrarily large. If $R(q) \ge \alpha q$ for each $q \in K_i := [q_{i,\alpha}^R, q_{i+1,\alpha}^R]$, then we set $r = s = r_{i,\alpha}^R$. Otherwise [r, s] denotes the maximal subinterval of K_i on which $R(q) \le \alpha q$. Let us write $A_1 = (r, R(r))$, $A_2 = (s, R(s))$ and $A_3 = (r_{i,\alpha}^R, R(q_{i,\alpha}^R))$. The graph of R above the interval K_i is contained inside the triangle $(A_1 A_2 A_3)$. Let us denote by \mathcal{D}_1 (resp. \mathcal{D}_2) the horizontal line passing through the point $(r, R(r) + \varepsilon r)$ (resp. the line with slope 1 passing through $(s, R(s) + \varepsilon s)$ (see Figure 1)).

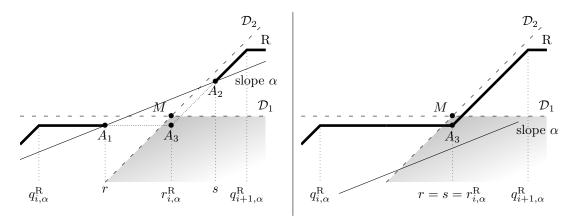


Figure 1: Graph of R on $[q_{i,\alpha}^{R}, q_{i+1,\alpha}^{R}]$

Now, let us define j as the maximal index such that $q_{j,\beta}^P \leq r$. The horizontal line passing through $(q_{j,\beta}^P, P(q_{j,\beta}^P))$ lies below the line \mathcal{D}_1 . If r = s, then $q_{j+1,\beta}^P \geq s$. Otherwise, if i is large enough, then for each $q \in [r, s]$ we have:

$$P(q) \le R(q) + \varepsilon q \le (\alpha + \varepsilon)q < \beta q$$

which implies that $q_{j+1,\beta}^P \geq s$. It follows that the line with slope 1 passing through $(q_{j+1,\beta}^P, P(q_{j+1,\beta}^P))$ is below the line \mathcal{D}_2 . As a consequence, the point $(r_{j,\beta}^P, P(q_{j,\beta}^P))$ lies in the area below \mathcal{D}_1 and \mathcal{D}_2 (the gray area of Figure 1). Let $M=(x_M,y_M)$ denote the intersection point of \mathcal{D}_1 and \mathcal{D}_2 . Then we have

$$\frac{P(q_{j,\beta}^P)}{r_{i,\beta}^P} \leq \frac{y_M}{x_M} = \frac{\mathrm{R}(q_{i,\alpha}^\mathrm{R}) + \varepsilon r}{r_{i,\alpha}^\mathrm{R} - \varepsilon s} \leq \frac{\mathrm{R}(q_{i,\alpha}^\mathrm{R}) + \varepsilon r_{i,\alpha}^\mathrm{R}}{r_{i,\alpha}^\mathrm{R}} \cdot \left(1 - \frac{\varepsilon}{1 - \alpha}\right)^{-1},$$

since $(1-\alpha)s \leq r_{i,\alpha}^{R}$. By taking the infimum over i, we obtain

$$\kappa_{\beta}(P) \le \left(\kappa_{\alpha}(R) + \varepsilon\right) \cdot \left(1 - \frac{\varepsilon}{1 - \alpha}\right)^{-1},$$

and by letting ε tend to 0 we prove (3.4). By symmetry, we also have $\kappa_{\beta}(R) \leq \kappa_{\alpha}(P)$, which yields $\kappa_{\alpha}(P) = \kappa_{\alpha}(R)$ at each point where $\alpha \mapsto \kappa_{\alpha}(R)$ is continuous. By letting successively β and α tend to $\overline{\psi}$ in (3.4), it follows that $\kappa(P) \leq \kappa(R)$. By symmetry we have $\kappa(R) \leq \kappa(P)$ and therefore $\kappa(P) = \kappa(R)$.

Proposition 3.5. Let $\mathbf{u} = (1, \xi, \eta)$ where ξ, η are non-zero real numbers and define the functions L_i, L_i^* (i = 1, 2, 3) as in Section 3.1 (with respect to \mathbf{u}). Then

$$\kappa(L_3) = -\kappa^*(L_1^*) = \frac{\widehat{\lambda}_{\min}(\xi, \eta)}{1 + \widehat{\lambda}_{\min}(\xi, \eta)}.$$
(3.5)

Proof Mahler's duality implies that $|L_3 + L_1^*|$ is bounded. By Lemma 3.4 we conclude that $\kappa(L_3) = -\kappa^*(L_1^*)$. Now, let us define N and Δ by $N(\mathbf{x}) = \|\mathbf{x}\|$ and $\Delta = \|\mathbf{u} \wedge \mathbf{x}\|$ ($\mathbf{x} \in \mathbb{R}^3$). For each $\mu \geq 0$ with $\mu < \lambda(\xi, \eta)$, we denote by $\widehat{\nu}_{\mu}(\xi, \eta)$ the exponent associated to N and Δ as in Section 2. Let $(\mathbf{x}_i)_{i\geq 0}$ be a sequence of minimal points associated to N and Δ and let us write $X_i := \|\mathbf{x}_i\|$, $\Delta_i := \|\mathbf{x}_i \wedge \mathbf{u}\|$ ($i \geq 0$). A wellknown result in parametric geometry of numbers (see [14, §4]) states that:

$$L_1^*(q) = \min_{i \in \mathbb{N}} L_{\mathbf{x}_i}^*(q) \quad (q > 0),$$
 (3.6)

where $L_{\mathbf{x}_i}^*(q) = \max \left(\log \Delta_i, \log X_i - q \right)$ (see (3.1)). Let us fix $0 \le \alpha < \overline{\psi}(-L_1^*) = -\underline{\psi}_1^*$ and set $\mu := \alpha/(1-\alpha) \ge 0$. Let us first prove that

$$\kappa_{\alpha}(-L_1^*) = \frac{\widehat{\nu}_{\mu}(\xi, \eta)}{1 + \widehat{\nu}_{\mu}(\xi, \eta)}.$$
(3.7)

We denote by $(q_i)_{i\geq 0}$, $(q_{k,\alpha})_k$ and $(r_{k,\alpha})_k$ the sequences associated to $\kappa_{\alpha}(-L_1^*)$ by Definition 3.3. Eq. (3.6) implies that q_i is the point at which $L_{\mathbf{x}_i}^*$ changes slope (from -1 to 0), which is precisely $\log(X_i) - \log(\Delta_i)$. Let $i_1 < i_2 < \ldots$ denote the sequence of indices i such that $\Delta_i \leq X_i^{-\mu}$. We claim that the sequence $(q_{k,\alpha})_k$ is the sequence $(q_{i_k})_k$. Indeed, the condition $-L_1^*(q_k)/q_k \geq \alpha$ is equivalent to the condition $\Delta_k \leq X_k^{-\mu}$, by using $-L_1^*(q_k) = -\log(\Delta_k)$. This implies that $r_{k,\alpha} = \log(X_{i_{k+1}}) - \log(\Delta_{i_k})$, and we thus have

$$\kappa_{\alpha}(-L_1^*) = \liminf_{k \to \infty} \frac{-L_1^*(q_{i_k})}{r_{k,\alpha}} = \liminf_{k \to \infty} \frac{-\log(\Delta_{i_k})}{\log(X_{i_{k+1}}) - \log(\Delta_{i_k})}.$$
(3.8)

Eqns. (2.2) and (3.8) together give (3.7). We conclude by noticing that when α tends to $-\underline{\psi}_1^* = \overline{\psi}_3$, then μ tends to $-\underline{\psi}_1^*/(1+\underline{\psi}_1^*) = \lambda(\xi,\eta)$ by (3.3) and (3.2).

4 Proof of Theorem 1.2

Recall that the first part of Theorem 1.2 follows from Laurent's inequalities (1.4) and from the fact that if $\lambda(\xi,\eta)=1/2$, then $\widehat{\lambda}_{\min}(\xi,\eta)=1/2$. Let us prove the second part of Theorem 1.2. Theorem 1.1 implies that there exist real numbers ξ,η with $1,\xi,\eta$ linearly independent over \mathbb{Q} , such that $\lambda(\xi,\eta)=\widehat{\lambda}_{\min}(\xi,\eta)=1/2$. Now, let $\widehat{\lambda}\in\mathbb{R}$ and $\lambda\in\mathbb{R}\cup\{+\infty\}$ satisfying (1.3). The strategy of the proof is to construct a 3-system $\mathbf{P}=(P_1,P_2,P_3)$ such that

$$\lim_{q \to \infty} P_1(q) = +\infty, \quad \overline{\psi}(P_3) = \frac{\lambda}{1+\lambda} \quad \text{and} \quad \kappa(P_3) = \frac{\widehat{\lambda}}{1+\widehat{\lambda}}, \tag{4.1}$$

with the convention that $\lambda/(1+\lambda) = 1$ if $\lambda = +\infty$. If **P** is as above, Theorem 3.1 gives a non-zero vector $\mathbf{u} \in \mathbb{R}^3$ such that $\|\mathbf{L}_{\mathbf{u}} - \mathbf{P}\|$ is bounded. Moreover, we may suppose $\mathbf{u} = (1, \xi, \eta)$ with $1, \xi, \eta$ linearly independent over \mathbb{Q} , since P_1 is not bounded. Then, Lemma 3.4, Proposition 3.5 and relation (3.3) imply that $\lambda(\xi, \eta) = \lambda$ and $\widehat{\lambda}_{\min}(\xi, \eta) = \widehat{\lambda}$.

In order to cover the full joint spectrum of $(\lambda, \hat{\lambda}_{\min})$ we distinguish between two cases. Our first construction deals with the case $\max(1-\lambda, 0) < \hat{\lambda}$ (note that this inequality is fulfilled if $\hat{\lambda} \ge 1/2$,

since $\lambda > 1/2$) and the second one deals with the case $\hat{\lambda} \leq 1/2$.

First case. Suppose that $\lambda, \widehat{\lambda}$ satisfy $1 < \lambda + \widehat{\lambda}$ and $0 < \widehat{\lambda}$. For convenience, let us define $\nu \in (0, 1/\widehat{\lambda}]$ by $1/\nu = \widehat{\lambda}(1 + 1/\lambda)(1 + \widehat{\lambda}/\lambda)$. This number satisfies the relations

$$1 - \frac{\widehat{\lambda}}{\lambda}\nu - \left(\frac{\widehat{\lambda}}{\lambda}\right)^2\nu = \frac{\lambda}{1+\lambda} \quad \text{and} \quad 1 + \nu - \left(\frac{\widehat{\lambda}}{\lambda}\right)^2\nu = \frac{\lambda}{1+\lambda} \cdot \frac{1+\widehat{\lambda}}{\widehat{\lambda}}.$$
 (4.2)

Under our hypotheses on λ and $\hat{\lambda}$ we have

$$\frac{\widehat{\lambda}}{\lambda} < \frac{1}{\nu} - \frac{\widehat{\lambda}}{\lambda} - \left(\frac{\widehat{\lambda}}{\lambda}\right)^2 \le 1.$$
 (4.3)

Indeed, the first inequality of (4.3) is equivalent to $1 < \lambda + \widehat{\lambda}$ and the second one is equivalent to the third inequality of (1.3). Let $(\beta_k)_{k\geq 0}$ be a non-decreasing sequence of real numbers > 1 such that β_k tends to $\lambda/\widehat{\lambda} \in (1, +\infty]$ as k tends to infinity. If $\lambda = +\infty$, we may take $\beta_k = k+1$ for each $k \geq 0$. If $\lambda < +\infty$, then we may simply take $\beta_k = \lambda/\widehat{\lambda}$ for each $k \geq 0$. Since $\lambda/\widehat{\lambda} > 1$, the sequence $(q_k)_{k\geq 0}$ defined by $q_k := \prod_{i=0}^k \beta_i$ tends to infinity. By (4.3) and by the choice of $(\beta_k)_k$, there is an index $N \geq 1$ such that for each $k \geq N$ we have:

$$\frac{1}{\beta_k \beta_{k-1}} \le \frac{1}{\beta_k} < \frac{1}{\nu} - \frac{1}{\beta_k} - \frac{1}{\beta_k \beta_{k-1}} \le 1. \tag{4.4}$$

For each $k \ge 1$, we define a point $\mathbf{a}^{(k)} = (a_1^{(k)}, a_2^{(k)}, a_3^{(k)}) \in \mathbb{R}^3$ by

$$\mathbf{a}^{(k)} = q_k \times \left(\frac{\nu}{\beta_k \beta_{k-1}}, \frac{\nu}{\beta_k}, 1 - \frac{\nu}{\beta_k} - \frac{\nu}{\beta_k \beta_{k-1}}\right).$$

Note that $a_1^{(k+1)} = a_2^{(k)}$ since $q_{k+1} = \beta_{k+1}q_k$, and that $a_1^{(k)} + a_2^{(k)} + a_3^{(k)} = q_k$. Inequalities (4.4) may be rewritten as $a_1^{(k)} \le a_2^{(k)} < a_3^{(k)} \le a_2^{(k+1)}$ for each $k \ge N$. We now construct the 3-system \mathbf{P} on $[q_N, +\infty)$ whose combined graph is shown on figure 2.

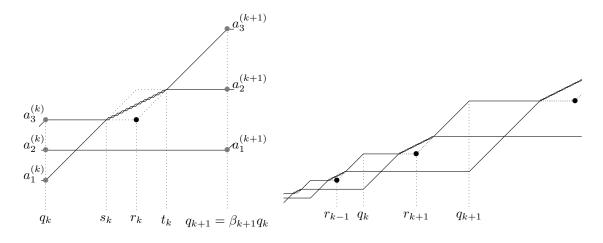


Figure 2: combined graph of a 3-system P

Set $\Delta = \{(x_1, x_2, x_3) \in \mathbb{R}^3 ; x_1 \leq x_2 \leq x_3\}$ and denote by $\Phi : \mathbb{R}^3 \to \Delta$ the continuous map which lists the coordinates of a point in monotone non-decreasing order. Let s_k and t_k be such that $a_1^{(k)} + s_k - q_k = a_3^{(k)}$ and $a_2^{(k+1)} = a_3^{(k+1)} - (q_{k+1} - t_k)$. We have

$$s_k = \left(2 - \frac{\nu}{\beta_k} - \frac{2\nu}{\beta_k \beta_{k-1}}\right) q_k$$
 and $t_k = \left(2\nu + \frac{\nu}{\beta_k}\right) q_k$,

and thus $s_k \leq t_k$ thanks to the last inequality of (4.4). We define

$$\mathbf{P}(q) = \begin{cases} \Phi(a_1^{(k)} + q - q_k, a_2^{(k)}, a_3^{(k)}) & \text{if } q_k \le q \le s_k \\ \Phi(a_1^{(k+1)}, a_2^{(k+1)}, a_3^{(k+1)} + q - q_{k+1}) & \text{if } t_k \le q < q_{k+1}. \end{cases}$$

In order to define **P** on $[s_k, t_k]$, note that the ratio $a_2^{(k+1)}/t_k$ is smaller than 1/2 and tends to $1/(2+\widehat{\lambda}/\lambda)$ as k tends to infinity, whereas the ratio $a_3^{(k+1)}/q_{k+1}$ tends to $\lambda/(1+\lambda)$ by using (4.2). Yet, the inequality $1 < \lambda + \widehat{\lambda}$ implies that the first limit is less than the second one. There exists therefore a real number θ such that

$$\frac{a_2^{(k+1)}}{t_k} < \theta < \frac{a_3^{(k+1)}}{q_{k+1}}$$

for k large enough. For each $q \in [s_k, t_k]$, we set $P_1(q) = a_2^{(k)}$ and we define $P_2(q)$ and $P_3(q)$ such that $\mathbf{P} = (P_1, P_2, P_3)$ satisfies the hypotheses of a 3-system (which is possible since the line passing through the points $(s_k, a_3^{(k)})$ and $(t_k, a_2^{(k+1)})$ has slope 1/2) and such that, when k is large enough, we have

$$\frac{P_3(q)}{q} < \theta \quad \text{for each } q \in [s_k, t_k]$$
 (4.5)

(see figure 2). Let r_k be the abscissa of the intersection of the horizontal line passing through $(q_k, P_3(q_k))$ and of the line with slope 1 passing through $(q_{k+1}, P_3(q_{k+1}))$. We have

$$r_k = a_3^{(k)} - a_3^{(k+1)} + q_{k+1} = \left(1 + \nu - \frac{\nu}{\beta_k \beta_{k-1}}\right) q_k.$$

By (4.5) and (4.2), for each $\theta \leq \alpha < \lambda/(1+\lambda)$ we have

$$\overline{\psi}(P_3) = \limsup_{k \to \infty} \frac{P_3(q_k)}{q_k} = \limsup_{k \to \infty} \frac{a_3^{(k)}}{q_k} = \frac{\lambda}{1+\lambda} \quad \text{and} \quad \kappa_{\alpha}(P_3) = \kappa(P_3) = \liminf_{k \to \infty} \frac{P_3(q_k)}{r_k} = \frac{\widehat{\lambda}}{1+\widehat{\lambda}}.$$

Thus, **P** satisfies (4.1), which concludes the first case.

Second case. Suppose that $\widehat{\lambda} \leq 1/2$. Under this additional condition, (1.3) may simply be rewritten as $0 \leq \widehat{\lambda} \leq \frac{1}{2} < \lambda \leq +\infty$, which is equivalent to

$$0 \le \frac{\widehat{\lambda}}{1+\widehat{\lambda}} \le \frac{1}{3} < \frac{\lambda}{1+\lambda} \le 1.$$

Fix $\theta \in \mathbb{R}$ such that $1/3 < \theta < \lambda/(1+\lambda)$. Let $(\alpha_k)_{k \geq 1}$, $(\psi_k)_{k \geq 1}$ be two sequences of real numbers which tend to $\widehat{\lambda}/(1+\widehat{\lambda})$ and $\lambda/(1+\lambda)$ respectively, and such that for each $k \geq 1$, we have

$$0 < \alpha_k \le \frac{1}{3} < \theta < \psi_k < 1.$$

Let $(q_k)_{k\geq 0}$ be the sequence defined by $q_0=1$ and

$$q_{k+1} = \frac{\psi_k}{1 - \psi_{k+1}} \left(\frac{1}{\alpha_k} - 1\right) q_k \quad (k \ge 0).$$
 (4.6)

Note that $q_{k+1}/q_k > 2\theta/(1-\theta) > 1$ for each $k \ge 0$, which implies that the sequence $(q_k)_k$ tends to infinity. For each $k \ge 0$, let us define the abscissas s_k and t_k by $s_k/3 = \psi_k q_k$ and $t_k/3 = (1-\psi_{k+1})q_{k+1}/2$. Let r_k be the abscissa of the intersection point of the horizontal line passing through $(q_k, \psi_k q_k)$ and of the line with slope 1 passing through $(q_{k+1}, \psi_{k+1} q_{k+1})$ (see

figure 3). We have $r_k = \psi_k q_k + (1 - \psi_{k+1}) q_{k+1}$, which may be rewritten as $\alpha_k r_k = \psi_k q_k$ by (4.6). Since $0 < \alpha_k \le 1/3$, we have $s_k \le r_k \le t_k$. Now, let $\mathbf{P} = (P_1, P_2, P_3)$ be a 3-system on $[q_0, +\infty[$ such that for each $k \ge 0$, we have

$$\frac{\mathbf{P}(q_k)}{q_k} = \left(\frac{1 - \psi_k}{2}, \frac{1 - \psi_k}{2}, \psi_k\right), \quad \frac{\mathbf{P}(s_k)}{s_k} = \frac{\mathbf{P}(t_k)}{t_k} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right),$$

and such that

$$\frac{\mathbf{P}(q)}{q} \le \theta \quad \text{for each } q \in [s_k, t_k].$$
 (4.7)

An example of such 3-system is represented on figure 3.

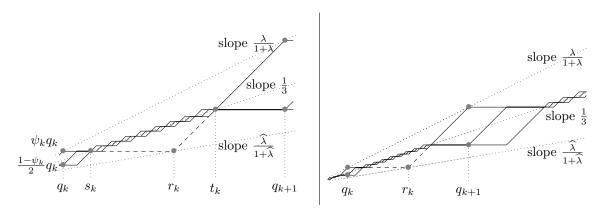


Figure 3: combined graph of the 3-system P

By (4.7) and since $\theta \leq \psi_k$ for each $k \geq 0$, it is clear that such a 3-system **P** satisfies $\overline{\psi}(P_3) = \lambda/(1+\lambda)$. Moreover, (4.7) also implies that $\kappa_{\alpha}(P_3) = \widehat{\lambda}/(1+\widehat{\lambda})$ for each α such that $\theta < \alpha < \lambda/(1+\lambda)$. We thus have $\kappa(P_3) = \widehat{\lambda}/(1+\widehat{\lambda})$ and **P** satisfies (4.1). This ends the proof of Theorem 1.2.

References

- [1] Y. Bugeaud. Exponents of Diophantine approximation. In D. Badziahin, A. Gorodnik, and N. Peyerimhoff, editors, *Dynamics and Analytic Number Theory*, volume 437 of *London Math. Soc. Lecture Note Ser.*, chapter 2, pages 96–135. Cambridge University Press, 2016.
- [2] Y. Bugeaud and M. Laurent. Exponents of Diophantine approximation and Sturmian continued fractions. Ann. Inst. Fourier, 55(3):773–804, 2005.
- [3] Y. Bugeaud and M. Laurent. On exponents of homogeneous and inhomogeneous Diophantine approximation. Moscow Math. J, 5(4):747–766, 2005.
- [4] J. Cassaigne. Limit values of the recurrence quotient of Sturmian sequences. Theoret. Comput. Sci., 218(1):3–12, 1999.
- [5] H. Davenport and W. Schmidt. Approximation to real numbers by quadratic irrationals. Acta Arith., 13(2):169–176, 1967.
- [6] H. Davenport and W. Schmidt. Approximation to real numbers by algebraic integers. Acta Arith., 15(4):393–416, 1969.
- [7] S. Fischler. Palindromic prefixes and diophantine approximation. Monatsh. Math., 151(1):11–37, 2007.
- [8] M. Laurent. Exponents of Diophantine approximation in dimension two. Canad. J. Math, 61:165–189, 2009.
- [9] A. Poëls. Exponents of Diophantine approximation in dimension 2 for numbers of Sturmian type. arXiv preprint arXiv:1711.07896, 2017.

- [10] A. Poëls. Applications de la géométrie paramétrique des nombres à l'approximation diophantienne. PhD thesis, Université Paris-Sud, https://tel.archives-ouvertes.fr/tel-01827304/document, 2018.
- [11] D. Roy. On Schmidt and Summerer parametric geometry of numbers. Ann. of Math., 182:739-786, 2015.
- [12] D. Roy. Spectrum of the exponents of best rational approximation. Math. Z., 283(1-2):143–155, 2016.
- $[13] \ \ \text{J. Schleischitz.} \ \ \text{On the spectrum of Diophantine approximation constants.} \ \ \textit{Mathematika}, \ 62(1):79-100, \ 2016.$
- [14] W. M. Schmidt and L. Summerer. Parametric geometry of numbers and applications. Acta Arith., 140:67–91, 2009.
- [15] W. M. Schmidt and L. Summerer. Diophantine approximation and parametric geometry of numbers. Monatsh. Math., 169:51-104, 2013.

A. Poëls,

LABORATOIRE DE MATHÉMATIQUES D'ORSAY, UNIV. PARIS-SUD, CNRS, UNIVERSITÉ PARIS-SACLAY, 91405 ORSAY, FRANCE,

Département de Mathématiques, Université d'Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada

 $E ext{-}mail:$ anthony.poels@uottawa.ca